110 research outputs found

    The Younger Dryas and millenial-scale oceanographic variability in the Sulu Sea, tropical western Pacific

    Get PDF
    EXTRACT (SEE PDF FOR FULL ABSTRACT): A high resolution, AMS carbon-14-dated sediment record from the Sulu Sea clearly indicates the Younger Dryas climatic event affected the western equatorial Pacific. Presence of the Younger Dryas in the tropical western Pacific indicates this climatic event is not restricted to the North Atlantic nor to high latitudes, but is global in extent

    Evaluating Sedimentary Geochemical Lake-Level Tracers in Walker Lake, Nevada, Over the Last 200 Years

    Get PDF
    Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes

    Oceanographic variability at Clipperton Atoll since the 1880s: stable isotopic evidence from massive corals [abstract]

    Get PDF
    EXTRACT (SEE PDF FOR FULL ABSTRACT): Clipperton Atoll (10°18'N, 109°13'W), lies within the eastern Pacific elongated warm water pool centered at 10°N and is situated at the boundary of the North Equatorial Counter-Current (NECC) and westward-flowing eddy currents moving away from Central America. ... Fifteen coral cores were collected from massive heads of Porites lobata in April 1994 for the purpose of reconstructing oceanographic and climatic conditions at this open ocean site in the eastern Pacific

    A 1200 Year Record of Hydrologic Variability in the Sierra Nevada from Sediments in Walker Lake, Nevada

    Get PDF
    Measurements of the oxygen isotopic composition (δ18O) of the total inorganic carbon (TIC) fraction from cored sediments of Walker Lake, Nevada, were conducted at an average resolution of ∼3 years per sample over the last 1200 years. On the basis of radiocarbon analysis on the total organic carbon (TOC) fraction, a δ18O time series was created to reconstruct changes in hydrologic conditions back to AD 800. The timings of variations in the TIC δ18O record are generally consistent with the tree ring-based Sacramento River flow record spanning AD 869 to 1977, indicating that Walker Lake δ18O contains information about past changes in at least regional hydrologic conditions. Comparison with the δ18O record from Pyramid Lake sediments indicates that both basins have recorded five century-scale oscillations in regional hydrologic conditions since AD 800. Several of these changes in hydrologic conditions appear synchronous with century-scale California Current water temperature changes derived from analysis of sediment cores from the Santa Barbara Basin also attesting to the regional extent of these climatic fluctuations. Nearly synchronous oscillations in the Sierra wetness and the California Current suggest that regional changes in atmospheric circulation may have played an important role in century-scale climate variability over the last millennium

    Late Holocene Lake-Level Fluctuations in Walker Lake, Nevada, USA

    Get PDF
    alker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (χ), total inorganic carbon (TIC), and oxygen isotopic composition (δ18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700 years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (\u3e 2400 years B.P.), a lake-filling period (∼ 2400 to ∼ 1000 years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (∼ 1000 to ∼ 600 years B.P.), a relatively wet period (∼ 600 to ∼ 100 years B.P.), and the anthropogenically induced lake-level lowering period (\u3c 100 years B.P.). The most pronounced lowstand of Walker Lake occurred at ∼ 2400 years B.P., as indicated by the relatively high values of δ18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400 years B.P

    Reconstructing the Upper Water Column Thermal Structure in the Atlantic Ocean

    Get PDF
    The thermal structure of the upper ocean (0–1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from δ18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, except for G. hirsuta, where the northern population calcifies much shallower than the southern population. N. dutertrei and G. tumida show a remarkably constant calcification depth independent of oceanographic conditions. The deepest dweller, G. crassaformis, apparently calcifies in the oxygen-depleted zone, where it may find refuge from predators and abundant aggregated matter to feed on. We found a good match between its calcification depth and the 3.2 ml/l oxygen level. The results of this multispecies, multiproxy study can now be applied down-core to facilitate the reconstruction of open-ocean thermocline changes in the past

    The influence of Indian Ocean atmospheric circulation on Warm Pool hydro-climate during the Holocene epoch

    Get PDF
    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September–November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene

    Rapid δ18O and δ13C isotopic shifts in late Pleistocene marine varves on the California margin

    Get PDF
    Upper Pleistocene sediments on the continental slope off Northern California contain alternations of varves and bioturbation produced by fluctuations in intensity of the coastal upwelling system. Stable isotopic analyses of benthic Foraminifera across a particularly well developed varve/bioturbation sequence deposited ~26,000 years ago reveal rapid shifts of ~0.25‰ in δ18O and ~0.4‰ in δ13C. The δ18O shift occurs within a varved section. Based on varve counts, the isotopic change occurred in less than 100 years. Timing and magnitude of the shift coincide with similar shifts observed in almost all other high-resolution δ18O records that have been interpreted as primarily representing global in-volume fluctuations

    Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 387 (2014): 240–251, doi:10.1016/j.epsl.2013.11.032.Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ∼19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (∼12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived δ18O of seawater (δ18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional δ18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the δ18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.ThisworkwasfundedbytheNationalScienceFoundation;theOceanandClimateChangeInstituteandtheAcademicProgramsOfficeatWoodsHoleOceano-graphicInstitution;BMBF(PABESIA);andDFG(He3412/15-1
    corecore